TRACKING OBJECTS BY THE BAYESIAN NETWORK
نویسندگان
چکیده
منابع مشابه
Moving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملAdaptive Bayesian Recognition in Tracking Rigid Objects
We present a framework for tracking rigid objects based on an adaptive Bayesian recognition technique that incorporates dependencies between object features. At each frame we find a maximum a posteriori (MAP) estimate of the object parameters that include positioning and configuration of non-occluded features. This estimate may be rejected based on its quality. Our careful selection of data poi...
متن کاملFist Tracking Using Bayesian Network
This paper presents a Bayesian network based multi-cue fusion method for robust and real-time fist tracking. Firstly, a new strategy, which employs the latest work in face recognition, is used to create accurate color model of the fist automatically. Secondly, color cue and motion cue are used to generate the possible position of the fist. Then, the posterior probability of each possible positi...
متن کاملmoving objects tracking using statistical models
object detection plays an important role in successfulness of a wide range ofapplications that involve images as input data. in this paper we have presented anew approach for background modeling by nonconsecutive frames differencing.direction and velocity of moving objects have been extracted in order to get anappropriate sequence of frames to perform frame subtraction. stationary parts ofbackg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Novosibirsk Computing Center. Series: Computing Science.
سال: 2018
ISSN: 2542-1972
DOI: 10.31144/bncc.cs.2542-1972.2018.n42.p67-75